Chuong 2: Khéi niém co ban vé truong dién tir

Bai 1:

2.5. Let a point charge 125 nC be located at P;(4,—2,7) and a charge Q2 = 60 nC be at P>(—3,4, —2).
a) If e = €, find E at P3(1,2,3): This field will be

E

B 10~ [251113 SORQS}
4dmeg |Rl3|3 |R23|3
where R13 = —3a, +4a, —4a. and Ry3 = 4a, —2a, + 5a.. Also, |[R13| = v/41 and |Ra3| = VA45.
So
E— 1079 [25 x (—3a, +4a, —4a,) 60 x (4da, — 2a, + Ha;)
d7eg (41)1-5 (45)12
= 4.58a, — 0.15a, + 5.51a.

b) At what point on the y axis is E, = 07 P5 is now at (0,y,0), so Ry3 = —4a, + (y + 2)a, — Ta,
and Ry = 3a, + (y — 4)a, + 2a.. Also, |[Ry3| = /65 + (y+2)? and [Ro3| = /13 + (y —4)2.
Now the © component of E at the new P3 will be:

Bo— 07 25 x (—4) 60 x 3
T dmeo [[65+ (y+2)210 0 [134 (y —4)2LS

To obtain E, = (0, we require the expression in the large brackets to be zero. This expression
simplifies to the following quadratic:

0.48y% + 13.92y + 73.10 =0

which yields the two values: y = —6.89, —22.11




Bai 2:

Point charges of 120 nC are located at A(0, 0, 1) and B(0, 0, —1) in free space.
a) Find E at P(0.5. 0, 0): This will be

§ 120 x 10~° [ Rip Rgp ]
Pi= 3
deg Rapl*  |Rgpl?

where Rqp = 0.5a; — a, and Rgp = 0.5a; + a,. Also, |Rap| = |Rgp| = +/1.25. Thus:

_ 120 x 10~ %a,
T 47(1.25) ) 5¢q

Ep =772 V/m

b) What single charge at the origin would provide the identical field strength? We require

Qo

—_— =772
47€(0.5)2

from which we find Q¢ = 21.5 nC.

Bai 3:
2.7. A 2 pC point charge is located at A(4,3,5) in free space. Find E,, Ey4, and E. at P(8,12,2). Have

E.— 2% 1076 R.r _ 2x10°° da, +Qag—3az
P = " ine Rap]?  drme (106)'->

= 65.9a, + 148.3a, — 49.4a.

Then, at point P, p = /82 + 122 = 14.4, ¢ = tan~!(12/8) = 56.3°, and z = z. Now,
E,=E,-a,=659a,-a,)+ 148.3(a, -a,) = 65.9co0s(56.3°) + 148.3sin(56.3°) = 159.7
E,=E, -a,=650(a, -a,) + 1483(a, - a,) = —65.95in(56.3°) + 148.3 cos(56.3°) = 27.4

Finally, E, = —49.4 V/m

Bai 4:



2.11. A charge @, located at the origin in free space produces a field for which E, = 1 kV/m at point
P(-2,1,-1).

a) Find Qp: The field at P will be

Ep

_ Qo [—2a; ta, —a;
dmeg 615

Since the z component is of value 1 kV/m, we find Qp = —4mey6'° x 10° = —1.63 uC.
b) Find E at M(1,6,5) in cartesian coordinates: This field will be:

- —1.63 x 10—9 {a,,. + 6a, + 5az]

Eu = :
M d7eq [1+36 + 25]13

or Ejr = —30.11a, — 180.63a, — 150.53a..

¢) Find E at M(1,6,5) in cylindrical coordinates: At M, p = /1 + 36 = 6.08, ¢ = tan—1(6/1) =
80.54°, and z = 5. Now

E, =Ey-a, = =30.11 cos ¢ — 180.63sin ¢ = —183.12
Ey =Ep -ay = —30.11(—sin¢) — 180.63cos ¢ = 0 (as expected)
so that Ky = —183.12a, — 150.53a..

d) Find E at M(1,6,5) in spherical coordinates: At M, r = /1 + 36 + 25 = T.87, ¢ = 80.54° (as
before), and § = cos™!(5/7.87) = 50.58°. Now, since the charge is at the origin, we expect to
obtain only a radial component of Ep;. This will be:

E, =Ej -a, = —30.11sin# cos ¢ — 180.63 sin f sin ¢ — 150.53 cos § = —237.1
Bai 5:

2.13. A uniform volume charge density of 0.2 pC/ m?® is present throughout the spherical shell extending
from r = 3 em to r = 5 em. If p, = 0 elsewhere:

a) find the total charge present throughout the shell: This will be

27 s .05 37.05
Q = ] / / 0.2 r2sinf drdf dé = Iiélrr(ﬂ.?)%] =821 x 107° uC = 82.1 pC
o Jo Jos

.03

b) find r; if half the total charge is located in the region 3em < r < rq: If the integral over r in
part a is taken to ry, we would obtain

™ -
[m(o.z)?] =4.105 x 1077

03

Thus

3% 4.105 x 10-°
= 0.2 x 47

1/3
+ (.03)3] =4.24 cm

Bai 6:



2.17. A uniform line charge of 16 nC/m is located along the line defined by y = —2

z=>5 If e = ¢p:

1

a) Find E at P(1,2,3): This will be

_ . Rp
P QTI'E[]. |].:lp|2

where Rp = (1,2,3) — (1,-2,5) = (0,4, —2), and |Rp|? = 20. So

Ep =
P 20

-9 .
16 % 10 [4ay Qaz] = 57.5a, — 28.8a, V/m
2mep

b) Find E at that point in the z = 0 plane where the direction of E is given by (1/3)a, — (2/3)a.:

Bai 7:

With 2z = 0, the general field will be

E - (y +2)a, — Sa,
- 27ep | (y+2)%2+ 25
We require |E.| = —|2E,|, so 2(y + 2) = 5. Thus y = 1/2, and the field becomes:

p 2.5a, — Ha.
Ez:O - ! [ 2y

— 93a, — 46a.
e (2.5)2+25] Ay — A

2.19. A uniform line charge of 2 pC/m is located on the z axis. Find E in cartesian coordinates at P(1,2,3)
if the charge extends from

a)

Bai 8:

—o0 < z < oo: With the infinite line, we know that the field will have only a radial component
in cylindrical coordinates (or x and y components in cartesian). The field from an infinite line
on the z axis is generally E = [p;/(2megp)|a,. Therefore, at point P:

2l R.p (2 * 10_6) a, + Qay

Eo — _
P 2meg |R.p|? 2me, 5

= 7.2a, + 14.4a, kV/m

where R.p is the vector that extends from the line charge to point P, and is perpendicular to

the z axis; i.e., R.p = (1,2,3) — (0,0, 3) = (1,2,0).

—4 < z < 4: Here we use the general relation

EP:/pidz r—r

dmeg [r —1'|3

where r = a, + 2a, + 3a. and r’ = za.. So the integral becomes

(2x107%) [* a, +2a,+ (3—2)a.

E pr—
i dmeg 4 B3 —2)3e

dz

Using integral tables, we obtain:

(a, +2a,)(z — 3) + 5a,

Ep = 3507 (22 — 62+ 14)

4
] V/m = 4.9a, + 9.8a, +4.9a. kV/m
—4




2.23. Given the surface charge density, p, = 2 uC/ m?, in the region p < 0.2 m, z = 0, and is zero elsewhere,
find E at:

a) Pa(p = 0,z = 0.5): First, we recognize from symmetry that only a z component of E will be
present. Considering a general point z on the z axis, we have r = za.. Then, with r’ = pa,, we
obtain r — r’ = za. — pa,. The superposition integral for the z component of E will be:

2 0.2 0.2
f ] zpdpdop _pr_.,z 1
E.pa = 4?TFO (p2 + 22)L5 deg V22 + p? .

2‘0 [\/_ \m]

With z = 0.5 m, the above evaluates as E. p, = 8.1 kV/m.

b) With z at —0.5 m, we evaluate the expression for E. to obtain E. p, = —8.1 kV/m.
Bai 9:

2.25. Find E at the origin if the following charge distributions are present in free space: point charge, 12nC
at P(2,0,6); uniform line charge density, 3nC/m at z = —2, y = 3; uniform surface charge density,
0.2nC/ m? at = = 2. The sum of the fields at the origin from each charge in order is:

g [(2x 1077) (- 2a,  6a.) (3x107") (2a, —3a,)] [(02x10 %)a,
- 47eg (44 36)15 } [ 2meg 4+9) ] [ 2¢€0 ]

= —3.9a, — 12.4a, — 2.5a; V/m

Chuong 3: Dich chuyén dién — Luat Gauss — Dive

Bai 1:



3.2. A point charge of 20 nC is located at (4,-1,3), and a uniform line charge of -25 nC/m is lies
along the intersection of the planes © = —4 and z = 6.

a) Calculate D at (3,-1,0):
The total flux density at the desired point is

D(3,-1,0) =

20 x 10~ [—aw—Saz] 25 % 10~? l'ra,,.—ﬁaz]
Ar(1+9) [ V149 | 2my49+36 | V49436 |

W e
point charge line charge

= —0.38a, + 0.13a. nC/m?

b) How much electric flux leaves the surface of a sphere of radius 5, centered at the origin?
This will be equivalent to how much charge lies within the thD[‘D First the point charge is
at distance from the origin given by R, = v/16 + 1 + 9 = 5.1, and so it is outside. Second,
the nearest point on the line charge to the origin is at dl‘-:tEl.IlC'L Ry = /16 + 36 = 7.2, and
s0 the entire line charge is also outside the sphere. Answer: zero.

¢) Repeat part b if the radius of the sphere is 10.
First, from part b, the point charge will now lie inside. Second, the length of line

charge that lies inside the sphere will be given by 2y, where 1, satisfies the equation,
v/ 16 + y2 + 36 = 10. Solve to find yp = 6.93, or 2yy = 13.86. The total charge within the
sphere (and the net outward flux) is now
P = Qenet = [20 — (25 x 13.86)] = —326 nC

Bai 2:

Bai 3:

3.3. The cylindrical surface p = 8 cm contains the surface charge density, p, = 5e~2012l nC / m?.

a) What is the total amount of charge present? We integrate over the surface to find:

o0 2 1 o0
Q=2 f ] 5¢2%(.08)d¢p dz nC = 207 (.08) ( ) e~ 207
0o Jo 20

1]

= (0.25nC

b) How much flux leaves the surface p = 8cm, lem < 2z < 5em, 30° < ¢ < 90°7 We just
integrate the charge density on that surface to find the flux that leaves it.

an® _ —
b =Q = f e~ 292(,08) d¢pdz nC = (9[}36[}3()) 2m(5)(.08) (2—5) e 202
3

= 9.45 x 10° nC = 9.45 pC

.05

.0

Bai 4:



Bai 5:

3.5. Let D = 4zya, + 2(z? + z%)a, + 4yza. C/m? and evaluate surface integrals to find the total
charge enclosed in the rectangular parallelepiped 0 <z <2, 0 <y < 3,0 < z < 5 m: Of the 6
surfaces to consider, only 2 will contribute to the net outward flux. Why? First consider the
planes at y = 0 and 3. The y component of D will penetrate those surfaces, but will be inward
at y = () and outward at y = 3, while having the same magnitude in both cases. These fluxes

will thus cancel. At the x = 0 plane, D, = 0 and at the z = 0 plane, D. = 0, so there will be
no flux contributions from these surfaces. This leaves the 2 remaining surfaces at x = 2 and
z = 5. The net outward flux becomes:

5 p3 3 p2
'I':] / D‘I_Q-aidydz—}—] / D‘z_ﬁ-azdxdy
0 Jo B 0 Jo o
3 3
=5/ 4(2)ydy + 2/ 4(5)y dy = 360 C
0 0

Bai 6:

2= 1000

3.7. Volume charge density is located in free space as p, = nC/ m? for 0 < r < 1 mm, and

pp = 0 elsewhere.
a) Find the total charge enclosed by the spherical surface r = 1 mm: To find the charge we

2 '.r| 001
Q= f / ] 2¢ 100072 6in O dr dO do
o Jo Jo

Integration over the angles gives a factor of 4w. The radial integration we evaluate using
tables; we obtain

integrate:

_T.Ze—lﬂﬂﬂv' ‘_ﬂ(‘]] 9 —1000r

001
1000 o+ T000 (zo00yz 10007 1| ] L0 x 10~ nC

Q =8n [
b) By using Gauss'’s law, calculate the value of D, on the surface r = 1 mm: The gaussian
surface is a spherical shell of radius 1 mm. The enclosed charge is the result of part a.

We thus write 47r°D, = @, or

p - @ _40x107?

_ —4 2
= % = Zn (0007 = 3.2 x 107* nC/m




Bai 7:
3.9. A uniform volume charge density of 80 4C/m® is present throughout the region 8mm < r <
10mm. Let p, =0 for 0 < r < 8mm.
a) Find the total charge inside the spherical surface r = 10 mm: This will be

) ﬂ— - " ;r'g 010
Q = f / f (80 * 10_6}T2 sin 6 dr df do = 4 X (80 x 10_{-,)_
0 PPty 3 lLoos

=1.64x107'°C = 164pC

b) Find D, at r = 10 mm: Using a spherical gaussian surface at r = 10, Gauss’ law is
written as 472D, = Q = 164 x 1072, or

164 x 1012

Dr(10mm) = =21y

=1.30 x 1077 C/m? = 130nC/m?

¢) If there is no charge for r > 10 mm, find D, at v = 20 mm: This will be the same
computation as in part b, except the gaussian surface now lies at 20 mm. Thus

164 x 10712

Dy (20mm) = —Froo

=3.25 x 107°C/m* = 32.5nC/m’
Bai 8:

3.11. In cylindrical coordinates, let p, = 0 for p < 1 mm, p, = 2sin(20007p) nC/m? for 1mm <
p < L.5mm, and p, = 0 for p > 1.5mm. Find D everywhere: Since the charge varies only
with radius, and is in the form of a cylinder, symmetry tells us that the flux density will be
radially-directed and will be constant over a cylindrical surface of a fixed radius. Gauss’ law
applied to such a surface of unit length in z gives:

a) for p < 1 mm, D, = 0. since no charge is enclosed by a cylindrical surface whose radius
lies within this range.

b) for lmm < p < 1.5 mm, we have

i)
2mpD, = 21‘1’/ 2 x 107 sin(20007p") p’ dp’

001
o
= 4 x 107° | ———— sin(2 S s(2
7w x 10 [20007)2 sin(20007p) 20007 cos(20007p) o
or finally,
~15 -
D, = Py [sin(?ﬂDOﬁp) + 27 [1 — 10%p cos(20007p)] } C/m* (1lmm < p < 1.5mm)



3.11. (continued)

¢) for p > 1.5 mm, the gaussian cylinder now lies at radius p outside the charge distribution,

Bai 9:

so the integral that evaluates the enclosed charge now includes the entire charge distri-
bution. To accomplish this, we change the upper limit of the integral of part b from p to
1.5 mm, finally obtaining:

- 25x10718

D
P T

C/m? (p>1.5mm)

3.13. Spherical surfaces at r = 2, 4, and 6 m carry uniform surface charge densities of 20 nC/m?2,
—4nC/m?, and pyg, respectively.

a)

Bai 10:

Find D at r = 1, 3and5 m: Noting that the charges are spherically-symmetric, we
ascertain that D will be radially-directed and will vary only with radius. Thus, we apply
Gauss’ law to spherical shells in the following regions: r < 2: Here, no charge is enclosed,

and so D, = 0.

80 x 1079

2

2<r<4: 4nr’D, =47(2)*(20x 1077) = D, = C/m”

So D,(r=3)=89x10"?C/m?.

~16x 1077

r2

1<r<6: 4nr’D, =47(2)*(20 x 107%) + 47(4)*(-4 x 107") = D,

So D,.(r =5) = 6.4 x 1071 C/m?.

Determine p, such that D = 0 at r = 7 m. Since fields will decrease as 1/r?, the question
could be re-phrased to ask for p,, such that D = 0 at all points where r > 6 m. In this
region, the total field will be

16 x 1077 «0(6)2
6 x 10 +ﬁn(ﬁ)

D,(r>6)= 5 5

T r

Requiring this to be zero, we find pyo = —(4/9) x 10~ C/m?.

3.15. Volume charge density is located as follows: p, = 0 for p < 1 mm and for p > 2 mm,
py =4p pC/m? for 1 < p < 2 mm.



a) Calculate the total charge in the region 0 < p < py, 0 < 2 < L, where 1 < p; < 2 mm:

We find L
Tore 8L
Q= [ [ [ appdpavdz = =2 (5t~ 107 e
0 0 001 3

where pq is in meters.

b) Use Gauss’ law to determine D, at p = p;: Gauss’ law states that 2mrp; LD, = @), where
() is the result of part a. Thus

_ 4(p? —1077)

Dp(p1) = 3 puC/m?

where p; is in meters.

c) Evaluate D, at p = 0.8 mm, 1.6 mm, and 2.4mm: At p = 0.8mm, no charge is enclosed
by a cylindrical gaussian surface of that radius, so D,(0.8mm) = 0. At p = 1.6 mm, we
evaluate the part b result at p; = 1.6 to obtain:

4[(.0016)3 — (.0010)?]

D, (1.6mm) = 3(.0016)

= 3.6 x 107% puC/m?

At p = 2.4, we evaluate the charge integral of part a from .001 to .002, and Gauss’ law is
written as

2npLD, = ?[(.002)2 — (.001)?] uC

from which D,(2.4mm) = 3.9 x 1076 pC/m2.

Bai 11:



3.17. A cube is defined by 1 < z,y,z < 1.2. If D = 22%ya, + 3z%y%a, C/m?

a) apply Gauss’ law to find the total flux leaving the closed surface of the cube. We call the
surfaces at x = 1.2 and = = 1 the front and back surfaces respectively, those at y = 1.2
and y = 1 the right and left surfaces, and those at z = 1.2 and z = 1 the top and bottom
surfaces. To evaluate the total charge, we integrate D - n over all six surfaces and sum
the results. We note that there is no z component of D, so there will be no outward flux
contributions from the top and bottom surfaces. The fluxes through the remaining four

are
1.2 1.2 1.2 1.2
@zQz%D-ndaz/ f 2(1.2)9ydydz+/ f —2(1)*y dydz
1 1 1 1

front back
1.2 1.2 1.2 1.2
+ / / —3z%(1)* dx dz—}—f / 37%(1.2)* drdz = 0.1028 C
1 1 1 1
l:l:l. ri_;hl.

b) evaluate V - D at the center of the cube: This is

VD = [4zy + 6z%y] )= 4(1.1)% +6(1.1)* = 12.83

(1.1.1.1
Bai 12:
3.21. Calculate the divergence of D at the point specified if

a) D = (1/z%) [10zyz a, + ba*za, + (22° — 5z?y)a.] at P(—2,3,5): We find

10 1022
V-D=|—240+2+ };y]
Z Z (—2,3,5)

=8.9

[

b) D = 5z%a, + 10pz a, at P(3,—45°,5): In cylindrical coordinates, we have

19
~ pop

V-D (PDﬂ)+

19D,  0D. _ la:ﬂ

p 06 = 02 , 10 1 = ILOT

(3,—45°,5)

¢c) D =2rsinflsinga, + rcosfsingay + rcosgay at P(3,45°, —45°): In spherical coordi-

nates, we have

1 9 1 9 1 oD
D= 2p. sin D ¢
v 2 Or (r"Dr) + rsind 06 (sin 60) + rsind 0¢
s 26 si
— ﬁsinﬁsin¢+cm - qu&—ﬂfnqb = =2
sin ¢ sin @ —

(3,450 ,—45°)



Bai 13:

3.23. a) A point charge @) lies at the origin. Show that div D is zero everywhere except at the
origin. For a point charge at the origin we know that D = Q/(4nr?)a,. Using the formula
for divergence in spherical coordinates (see problem 3.21 solution), we find in this case that

v.D- -2 (ﬁ 9 ):0

72 dr 47r?

The above is true provided r > 0. When r = 0, we have a singularity in D, so its divergence
is not defined.

b) Replace the point charge with a uniform volume charge density p, for 0 < r < a. Relate
puo to Q and a so that the total charge is the same. Find div D everywhere: To achieve
the same net charge, we require that (4/3)ma®p,0 = Q, s0 pyo = 3Q/(4wa®) C/m?. Gauss’
law tells us that inside the charged sphere

4 or
2 o 3 _
d7r°D, = gm" Puo = 3

Thus

D, = C/mandv.D= L2 (Qr3> 3Q

dmra3 r2 dr \ 4dma3 4mrad

as expected. Qutside the charged sphere, D = Q/(47r?) a, as before, and the divergence
is zero.

Bai 14:
3.25. Within the spherical shell, 3 < r < 4 m, the electric flux density is given as
D = 5(r —3)%a, C/m?
a) What is the volume charge density at r = 47 In this case we have

i
pp=V-D=—

72 5(7‘2D1~) =

(r — 3)%(5r — 6) C/m?3

S | on

which we evaluate at r = 4 to find p,(r = 4) = 17.50 C/m?3.

b) What is the electric flux density at r = 47 Substitute r = 4 into the given expression to
find D(4) = 5a, C/m?

c) How much electric flux leaves the sphere r = 47 Using the result of part b, this will be
® = 47(4)%(5) = 320z C

d) How much charge is contained within the sphere, r = 4?7 From Gauss’ law, this will be
the same as the outward flux, or again, Q = 3207 C.

Bai 15:



3.27. Let D = 5.00r%a, mC/m? for 7 < 0.08 m and D = 0.205a, /r? uC/m? for r > 0.08 m (note
error in problem statement).
a) Find p, for » = 0.06 m: This radius lies within the first region, and so

1d :
=V-D= ——(HD ) =55 00r*) = 20r mC/m*

which when evaluated at r = 0.06 yields p, (r = .06) = 1.20 mC/m?,

b) Find p, for r = 0.1 m: This is in the region where the second field expression is valid.
The 1/r? dependence of this field yields a zero divergence (shown in Problem 3.23), and
so the volume charge density is zero at 0.1 m.

c¢) What surface charge density could be located at r = 0.08 m to cause D = 0 for r > 0.08
m? The total surface charge should be equal and opposite to the total volume charge.
The latter is

2r pm p08
Q= f f f 20r(mC/m?) 72 sin @ dr df d¢p = 2.57 x 107* mC = 2.57 uC
o Jo Jo

S O T

l 2.57
Ps = —

W] = —32 .HJC/{IIIQ

Bai 16:
3.29. In the region of free space that includes the volume 2 < z,y, z < 3,

2
D = —(yza, +zza, — 2zya;) C/m?

N

a) Fwvalnate the volume integral side of the divergence theorem for the volume defined above:
In cartesian, we find V- D = 8zy/ z}. The volume integral side is now

/ V- de—f[ @dxdydﬁ,—( —4}(9—4)(%—%)=3.47c

b. Evaluate the surface integral side for the corresponding closed surface: We call the surfaces
at r = 3 and x = 2 the front and back surfaces respectively, those at y = 3 and y = 2
the right and left surfaces, and those at z = 3 and z = 2 the top and bottom surfaces.
To evaluate the surface integral side, we integrate D - n over all six surfaces and sum the
results. Note that since the x component of D does not vary with z, the outward fluxes
from the front and back surfaces will cancel each other. The same is true for the left

and right surfaces, since D, does not vary with y. This leaves only the top and bottom
surfaces, where the fluxes are:

j{D ds = f f _4””"" d:rdy f f _41"” dmy—(g 4)(9 — 4) (1—%) —=3.47C
Lop

bo Ltoxn




Bai 17:
3.31. Given the flux density
D= ECGH{EH}EE C/m?,
T

use two different methods to find the total charge within the region 1 < r <2 m, 1 < § < 2
rad, 1 < ¢ < 2 rad: We use the divergence theorem and first evaluate the surface integral
side. We are evaluating the net outward flux through a curvilinear “cube”, whose boundaries
are defined by the specified ranges. The flux contributions will be only through the surfaces
of constant #, however, since D has only a # component. On a constant-theta surface, the
differential area is da = rsinfdrd¢, where # is fixed at the surface location. Our flux integral

becomes
f[) dS = — f [ —rm(?]rsm l}drd(b-l—f f — cos(4) rsin( 2}drd¢

= —16 [cos(2) sin( ) — cos(4)sin(2)] = =3.91 C

We next evaluate the volume integral side of the divergence theorem, where in this case,

V-D= — 2sin 26

L 4 1 d (16 16 [cos208cosf
rsing@(f‘mﬂﬂﬂ) —sind do —::crs Hamf}] [—

2 sin #

We now evaluate:

/ V- -Ddv = f / ] lcos?ﬁ‘cmﬁ' —2511125’} r Hlnﬂdrdﬁ}d@
ol sin

The integral simplifies to

2
f / f 16[cos 28 cos @ 2sin 26 sin 4 d?‘dﬁdgﬁ:ﬂf [Bcosdf  cosBldf = 391 C
1



Chuwong 4: Nang luvgng — Dién thé

Bai 1:

4.1. The value of E at P(p = 2, ¢ = 40°, z = 3) is given as E = 100a, — 200a, + 300a. V/m.
Determine the incremental work required to move a 20 uC charge a distance of 6 pm:

a) in the direction of a,: The incremental work is given by dW = —qE - dL. where in this
case, dL. = dp a, =06 x 10-% a,. Thus

dW = —(20 x 107 C)(100 V/m)(6 x 107 %m) = =12 x 107? J = —12n]

b) in the direction of a,: In this case dL = 2dpa, = 6 x 10"%a,, and so

dW = —(20 x 107%)(=200)(6 x 107%) =24 x 107%J =24 nJ

¢) in the direction of a.: Here, dL = dza. =6 x 10°¢ a., and so

dW = —(20 x 107%)(300)(6 x 107°%) = —3.6 x 107%J = =36 nJ

d) in the direction of E: Here, dL = 6 x 107% ag, where

100a,, — 200a, + 300a.
ap = - -
¥ 7 11002 + 2002 + 3002]1/2

=0.267a, — 0.535a, + 0.802a.

Thus

dW = —(20 x 10~%)[100a, — 200a, + 300a,] - [0.267a, — 0.535 a, + 0.802a,](6 x 10~°)
= —44.9n)J

¢) In the dircetion of G = 2a, 3a, | 4a.: In this case, dL = 6 x 10~ % ag, where

2a, — 3a, + 4a.
ag = 22 32 5 21 =0.37T1a, —0.557Ta, +0.743 a.

SD TOW

dW — —(20 = 10~5)[100a, — 200a, + 300a.] - [0.371a, — 0.557a, + 0.743a.](6 x 10~6)
=—(20x 1079 37.1(a, -a,) — 55.7(a, - a,) — T4.2(ay -a,) + 111.4(a, - a,)
+222.9] (6 x 1079)

where, at P, (a,-a,) = (ay - a,) = cos(40”) = 0.766, (a, - a,) = sin(40”) = 0.643, and
(a4 -a,) = —sin(40°) = —0.643. Substituting these results in

dW = —(20 x 107%)[28.4 — 35.8 + 47.7 + 85.3 + 222.9](6 x 107 %) = —41.8nJ

Bai 2:



4.3.

Bai 3:

If E= 120a,V/m, find the incremental amount of work done in moving a 50 pum charge a
distance of 2 mm from:

a) P(1,2,3) toward Q(2,1,4): The vector along this direction will be @ — P = (1,-1,1)
from which apg = [a, —a, + a.]/v/3. We now write

(a, — a, +a;
V3

1
= —(50 x 107%)(120) [(a, - a.) — (a, - a,)] 75(2 x 107%)

At P, ¢ = tan"1(2/1) = 63.4°. Thus (a, - a,) = cos(63.4) = 0.447 and (a, - a,) =
sin(63.4) = 0.894. Substituting these, we obtain dW = 3.1 uJ.

b) Q(2,1,4) toward P(1,2,3): A little thought is in order here: Note that the field has only
a radial component and does not depend on ¢ or z. Note also that P and () are at the

same radius (v/5) from the z axis, but have different ¢ and z coordinates. We could just
as well position the two points at the same = location and the problem would not change.

dW = —qgE - dL = —(50 x 107°) |120a, - ] (2 x1077)

If this were so, then moving along a straight line between P and () would thus involve
moving along a chord of a circle whose radius is +/5. Halfway along this line is a point of
symmetry in the field (make a sketch to see this). This means that when starting from
either point, the initial force will be the same. Thus the answer is dW = 3.1 pJ as in part
a. This is also found by going through the same procedure as in part a, but with the
direction (roles of P and Q) reversed.



4.11. Let a uniform surface charge density of 5nC/m? be present at the z = 0 plane, a uniform line
charge density of 8nC/m be located at z = 0, z = 4, and a point charge of 2 uC be present
at P(2,0,0). 'V =0at M(0,0,5). find V at N(1,2.,3): We need to find a potential function

for the combined charges which is zero at M. That for the point charge we know to be

Q

dmeqr

Vp(’-"} =

Potential functions for the sheet and line charges can be found by taking indefinite integrals
of the electric fields for those distributions. For the line charge, we have

I I

For the sheet charge, we have

Vi(2) = —f%dx—l—ﬁb —-£:10

The total potential function will be the sum of the three. Combining the integration constants,

we obtain:

yo @ P op) - L2 1 C

 Amegr  2Teg Zeq

The terms in this expression are not referenced to a common origin, since the charges are at
different positions. The parameters r, p, and z are scalar distances from the charges, and will
be treated as such here. To evaluate the constant, C, we first look at point M, where Vp = 0.

At M, r =22 +57 =129, p=1, and z = 5. We thus have

—6 —9 -9
LR L R W PR E S, SN T R VT R
Amen/29 2Tey 2€p

At point N, r = 1+ 4+ 9 = +/14, p = V2, and z = 3. The potential at N is thus

2 l—l’i 1—!3] ' 1—9
x 10 8 x 10 lnu@]—IiXU

Vi = —
dmegy/14 2meg 2en

(3) —1.93 x 10° = 1.98 x 10* V = 1.98kV



Bai 5:

4.15. Two uniform line charges, 8 nC/m each, are located at r =1, z =2, and at z = -1, y = 2
in free space. If the potential at the origin is 100 V. find V" at P(4,1,3): The net potential
function for the two charges would in general be:

V= In(Ry) — 52— In(Ry) + C

E”TFQ 27reg
At the origin, Ry = Ry = V5, and V = 100 V. Thus, with pr =8 x 1079,

8 x 1079
100 = —Z%IH{\/E} +C = C=23316V
e

At P(4,1,3), B, = |(4,1,3)—(1,1,2)| = V10 and Ry = |(4.1,3) —(—1,2,3)| = v/26. Therefore

—9
Vp = 8x1077) [In(VI0) + In(v26)] +331.6 = —68.4 V

2mep

Bai 6:
Uniform surface charge densities of 6 and 2 nC'/m? are present at p = 2 and 6 em respectively,
in free space. Assume V' = 0 at p = 4 cm, and calculate V" at:

a) p=>5cm: Since V' = 0 at 4 em, the potential at 5 em will be the potential difference

between points 5 and 4:

5

5 o 02 1 —5 5
L{r,z—f E*dL:—f apsa o (02)(6x1077) (-):-3.[}25'9’
4 4 €op €0 } E—

b) p=T7 em: Here we integrate piecewise from p =4 to p=T:

.Il.f:;-":—fﬂ apﬁﬂ.dp_f?. {GPSE_‘_bP?ﬁ}dJ}
4 €op 6 €0pP

With the given values, this becomes

v {( 02)(6 x 10—‘*}]1 ( ) [(.[}2)[6 x 1079) 4+ (.06)(2 x 1{]—9)11 (?)
T = 11 1 — Il E

Ly €0

—9.678V



Bai 7:
4.19. The annular surface, 1em < p < 3em, z = 0, carries the nonuniform surface charge density
ps = 5pnC/m?. Find V at P(0,0,2cm) if V = 0 at infinity: We use the superposition integral

form:
Vp = _ psda
dmeglr — /|

where r = za, and r’ = pa,. We integrate over the surface of the annular region, with
da = pdpd¢. Substituting the given values, we find

y fﬁ"f‘“ (5% 1079 p 2dpde
P —

01 4?ng 24z "‘2
Substituting = — .02, and using tables, the integral evaluates as

(5 x 1079) p 5 (02)? > 1%
Vp = I:Tl [2 AT ( U?) ) ll‘l{p—l— Vet ({]2] :]] N =.081V

Bai 8:
4.23. It is known that the potential is given as V' = 80p® V. Assuming free space conditions, find:
a) E: We find this through

dv -
=-VV= _d_pa’o = —48p~4 V/m

b) the volume charge density at p = .5m: Using D = ¢E, we find the charge density
through

1\ d 14
vl T V-Dls = (E) dp (pDy) ‘J = —28.8e0p ‘ = —673pC/m”

¢) the total charge lying within the closed surface p = .6, 0 < z < 1: The easiest way to do

this calculation is to evaluate DP at p = .6 (noting that it is constant), and then multiply
by the cylinder area: Using part a, we have D,| = —48¢y(.6)”* = —521 pC/m?. Thus

Rl

Bai 9:



4.25. Within the cylinder p = 2, 0 < z < 1, the potential is given by V' = 100 + 50p + 150psin¢ V.
a) Find V, E, D, and p, at P(1,60°,0.5) in free space: First, substituting the given point,
we find Vp = 279.9V. Then,

E=-VV = —%ap ;?}z% = —[50 + 150sin ¢| a, — [150 cos @] a,

Evaluate the above at P to find Ep = —179.9a, — 75.0ay V/m

Now D = ¢E, so Dp = —1.59a, — .664a, anmﬂ. Then

1Y d 18Dy { 1 | ,.] 50
y=V:D= D))+ ——— = |——(50+ 150sin¢) + —150sin | g = ——e C
P ( )dp(ﬂ p) > 90 p( sin ¢) , sin¢| ep p(—'g

At P, this is p,p = —443 pij:’.

b) How much charge lies within the cylinder? We will integrate p,, over the volume to obtain:

2 g-' e
Q= f f j 0 “pdpdcz:dz = —27(50)ep(2) = =5.56 nC

Bai 10:
4.27. Two point charges, 1nC at (0,0,0.1) and —1nC at (0,0, —0.1), are in free space.
a) Calculate V' at P(0.3,0,0.4): Use

q B q
dmeg|RT|  dmeg|R|

Ve =
where R™ = (.3,0,.3) and R~ = (.3.0,.5), so that |[R"| = 0.424 and |R~| = 0.583. Thus

10079 1 1
Vp = 5.78 V
P = Tre [.424 583} L

b) Calculate |E| at P: Use

g(.3a, +.3a.) g(.3a, +.5a.) 107

E= =
P Anmey(.424)3 Ameg(.583)3 4dmeg

[2.42a, | 1.41a.] V/m

Taking the magnitude of the above, we find |Ep| = 25.2V/m.

¢) Now treat the two charges as a dipole at the origin and find V at P: In spherical coor-
dinates, P is located at r = /.32 + .42 = .5 and § = sin"'(.3/.5) = 36.9°. Assuming a

dipole in far-field, we have

gdcost 1079(.2) cos(36.9%)
dwegr? 4men(.5)2

Vp = =576V

Bai 11:



4.31. A potential field in free space is expressed as V' = 20/(zyz) V.

a) Find the total energy stored within the cube 1 < z,y,z < 2. We integrate the energy
density over the cube volume, where wg = (1/2)¢yE - E, and where

1 1
a, +

1
E:—?L‘—EU[ ar + —
T2yz TY“z

o] Vi

.T.y"z

The energy is now

2 P2 L2 1 1 1
Wg = 200¢ dudy dz
E 0 Fg/l- j; ]1. [I4y222 + T2yts2 + $2y234:| x dy

The integral evaluates as follows:

b) What value would be obtained by assuming a uniform energy density equal to the value
at the center of the cube? At C'(1.5,1.5,1.5) the energy density is

1
(1.5)*(1.5)*(1.5)

This, multiplied by a cube volume of 1, produces an energy value of 207 pJ.

wg = 2006 (3) { ] =2.07 x 107'° J/m?

Bai 12:



1.33. A copper sphere of radius 1 cm carries a uniformly-distributed total charge of 5pC in free
space.

a) Use Gauss' law to find D external to the sphere: with a spherical Gaussian surface at

radius r, 2 will be the total charge divided by the area of this sphere, and will be a,-

directed. Thus 0 5 % 106
_ _oax o 2
D= Aqrr? ar = Amr? A Gfl'ﬂ

4.33b) Calculate the total energy stored in the electrostatic field: Use

27 o0 —6\2
WE_/ Ly Edv—/ / / LOXWT) a9 odmitds
: 2 167w 601‘4

(5 x 107%)? / dr  B/x107? 1
=) (2> 16m2¢g  Jou 2 8meg .04 2aid

¢) Use Wg = Q?/(2C) to calculate the capacitance of the isolated sphere: We have

Q* (5 % 107°)2 —12
el - — 445 x 1072 F = 445 pF
C= 9w, = 20281 prel op

Bai 13:



4.35. Four 0.8 nC point charges are located in free space at the corners of a square 4 cm on a side.
a) Find the total potential energy stored: This will be given by

1 +
We=3D> auVa

n=1

where V), in this case is the potential at the location of any one of the point charges that
arises from the other three. This will be (for charge 1)

g (1 1 1
Vi=Vai+Var+Va = 042
3 21 + Va1 + Vi 4meg [.Elri ™ .04 * .ﬂ4x/§]

Taking the summation produces a factor of 4, since the situation is the same at all four
points. Consequently,

1 8x 1079)2 1
W =s(d)nW = (8x 10 ) {2 + —] =779 x 1077 ) =0.779 )

2men(.04) V2

b) A fifth 0.8 nC charge is installed at the center of the square. Again find the total stored
energy: This will be the energy found in part a plus the amount of work done in moving
the fifth charge into position from infinity. The latter is just the potential at the square
center arising from the original four charges, times the new charge value, or

4(.8 x 1077)2

AWg =
F Ame(.04v/2/2)

= 813l

The total energy is now

Wg net = Wg(parta) + AWg = .779 + .813 = 1.59 pJ



Chuong 5: Vat dan — Dién mdi — Dién dung
Bai 1:
5.1. Given the current density J = —10%[sin(2z)e~%¥a, + cos(2z)e~?¥a,]| kA /m?:

a) Find the total current crossing the plane y = 1 in the a, direction in the region 0 < r < 1,
0 < z < 2: This is found through

ff.] 11‘ da—f f J- ay ~ d:rdz—f f —10* cos(2z)e 2 dx dz

= —10%(2 ]E sin( = —1.23MA

b) Find the total current leaving the region 0 < x,x < 1, 2 < z < 3 by integrating J-dS over
the surface of the cube: Note first that current through the top and bottom surfaces will
not exist, since J has no z component. Also note that there will be no current through the
r = 0 plane, since .J, = 0 there. Current will pass through the three remaining surfaces,
and will be found through

3 1 3 1
I:/f.]~{—a,y) d.-rdz+ff (a,)| drdHff a;)
=0 2 J0 y=1
_1n4ff [cos(2z)e ™ — cos(2x)e ] dacdz—lﬂ4f f sin(2)e Y dy dz

— 10 ( )am(z;-; ‘ (3-2)[1-e2] +10* (l)un 9)e” 23—" (3-2)=0

dy dz

c) Repeat part b, but use the divergence theorem: We find the net outward current through
the surface of the cube by integrating the divergence of J over the cube volume. We have

aJ.  dJ,

V-I=
dx dy

=—107* 2 cos(2z)e 2V — 2-::0&-;(2:1’:]6_23"} =0 as expected



Bai 2:
5.3. Let
~ 400sin#

A /m?
244 “r 'f

a) Find the total current flowing through that portion of the spherical surface r = 0.8,
bounded by 0.17 < # < 0.3m, 0 < ¢ < 2m: This will be

29 S > S
f_ff da—f f 4”“"‘“'9 (.8)%sinfdf do = Wf sin® df
Amw

4.64
= 346.5 f ;[1 — cos(26)]df = T7.4 A
Aw

b) Find the average value of J over the defined area. The area is

2m g
Area = f f (.8)?sinfdfdp = 1.46m>
0

The average current density is thus J,,, = (77.4/1.46) a, = 53.0a, A/m?2.
Bai 3:

5.5. Let
25 20

J=22a -
g U pA+001

a. A/m?

a) Find the total current crossing the plane z = 0.2 in the a. direction for p < 0.4: Use

2
20
d— dpd
¢ ff 2+D1 ¢

= ()20111([11—!—,0]‘ (27) = —207 In(17) = —178.0 A

b) Calculate dp, /dt: This is found using the equation of continuity:

ap, 18 ar 10 a( —20 )

J= — -2+ — [

- - _ =10
ot pdp

¢) Find the outward current crossing the closed surface defined by p =0.01, p =04, z =0,
and z = 0.2: This will be

I—/ f% 25 o, - (—a,)(. [}1)d¢dz+f fh ﬁap (a,)(.4) dpdz

+/hf —20 . (—a:) pd d¢+fzﬂf —20 (a.) pdpdp =0
—d= A= =
o Jo PArore pap 2+ 0L papae ==




Bai 4:
5.9a. Using data tabulated in Appendix C, calculate the required diameter for a 2-m long nichrome
wire that will dissipate an average power of 450 W when 120 V rms at 60 Hz is applied to it:
The required resistance will be

Thus the diameter will he

d=2a =2 Rl =9 __2450) =28 x 10 *m = 0.28
i Ve e T Ty P T

b) Calculate the rms current density in the wire: The rms current will be I = 450/120 =

3.75 A. Thus
3.75 - 9
J - 5 — 6.0 x 10 A/’m
m (2.8 x 1074/2)

Bai 5:
5.11. Two perfectly-conducting cylindrical surfaces of length [ are located at p = 3 and p = 5 cm.

The total current passing radially outward through the medium between the cylinders is 3 A
de.

a) Find the voltage and resistance between the cylinders, and E in the region between the
cylinders, if a conducting material having ¢ = 0.055/m is present for 3 < p < 5 cm:
Given the current, and knowing that it is radially-directed, we find the current density
by dividing it by the area of a cylinder of radius p and length I:

Then the electric field is found by dividing this result by o:

3 9.55
a, = ?ap V/m

2mapl

The voltage between cylinders is now:

3 a
V:—[ E-dL:L %ap‘apdﬁ'-':g'?ﬁln(i) _ 18y

Now . the resistance will he



Bai 6:
5.15. Let V =10(p+ 1)z2cos ¢V in free space.

a) Let the equipotential surface V' = 20V define a conductor surface. Find the equation of
the conductor surface: Set the given potential function equal to 20, to find:

(p+1)2%cosp =2

b) Find p and E at that point on the conductor surface where ¢ = 0.27r and z = 1.5: At
the given values of ¢ and z, we solve the equation of the surface found in part a for p,
obtaining p = .10. Then

oV 19V AV
dp o p 0o A P
p+1

E=-VV=—

2?singa, — 20(p + 1)zcos g a.

= —1022 cospa, + 10

Then
E(.10,.2m,1.5) = —18.2a, + 145a, — 26.7a, V/m

¢) Find |ps| at that point: Since E is at the perfectly-conducting surface, it will be normal
to the surface, so we may write:
E-E

ps=cE-m| = g = eoVE - E = €1/(18.2)2 + (145)2 + (26.7)2 = 1.32 nC/m?

Bai 7:
5.17. Given the potential field V' — 100zz/( 2 + 4) V. in free space:
a) Find D at the surface z = 0: Use

d T 100z
E=-VV=-100:—(—— | a, —0a, - ——a. V
ﬂﬂzal_ (:1.'2 4)& Oa, ke /m

At z = 0, we use this to find D(z = 0) = ¢gB(z = 0) = —100epz/(x? + 4)a. C/m?.

b) Show that the z = 0 surface is an equipotential surface: There are two reasons for this:
1) E at z = 0 is everywhere z-directed, and so moving a charge around on the surface
involves doing no work: 2) When evaluating the given potential function at z = 0, the
result is 0 for all = and y.

c) Assume that the z = 0 surface is a conductor and find the total charge on that portion
of the conductor defined by 0 < = < 2, —3 < y < 0: We have

=0 1244 C/m

P‘s:D'az

So

0 2
IDDE{}I 1 5 a
Q- f_J; o2 A dy = —(3)(100)e (E) In(z +4)‘n — —150eyIn2 — —0.92nC



Bai 8:
5.21. Let the surface y = 0 be a perfect conductor in free space. Two uniform infinite line charges
of 30 nC/m each are located at r=0,y=1, and z =0, y = 2.
a) Let V =0 at the plane y = 0, and find V" at P(1,2,0): The line charges will image across
the plane, producing image line charges of -30 nC/m each at =0, y = —1, and = = 0,

y = —Z. We find the potential at F by evaluating the work done in moving a unit positive
charge from the y = 0 plane (we choose the origin) to P: For each line charge, this will
be:

Ve — Vo0 =—

Ly [ final distance from charge ]

Il | — = :
27eg initial distance from charge

where Vg0 = 0. Considering the four charges, we thus have

i pi 1 V2 10 V1T
Vp = e |:111 (E) + In (T) —In (T) —In (T)]

pi 1 V17 30 x 107° 1017
= In(2)+In(— )+ (vV10)+ln| — || = |
2Teq n{}—|—n(\/§)—|—n( [)—l—n( 2 )] 2men 11[ V2
=1.20kV

b) Find E at P: Use

E o [(1,2.,0} —(0,1,0) (1,2,0) — (0.2,0)
P

- 2?;'!5() |(1!1D}|2 I{l-{]:n}P
C(1,2,0)—(0,-1,0)  (1,2,0) - (0,~2, n}l
|(13-{])|2 |(14ﬂ)|2
= Ires [ 3 — T 10 17 l =T723a, —18.9a, V/m

Bai 9:
5.23. A dipole with p = 0.1a, puC - m is located at A(1,0,0) in free space, and the = = 0 plane is
perfectly-conducting.

a) Find V at P(2,0,1). We use the far-field potential for a z-directed dipole:

_ pcosp z

V - - : : v [
Amegr?  Ameq [22 + y? + 22|15

The dipole at = 1 will image in the plane to produce a second dipole of the opposite
orientation at r = —1. The potential at any point is now:

_ P l z z l
- dmen [(r — 1}'2 4+ .y2 4 32]1.5 [[:r + 1}2 + _y2 + 32]1_5

Substituting P(2,0,1), we find

Ix10°[ 1 1
V= — — 2805V
dmeg Lﬁ mmn]




Bai 10:
6.3. A coaxial conductor has radii @ = 0.8 mm and b = 3 mm and a polystyrene dielectric for

which e, =2.56. If P = (2/p)a, nC/m? in the dielectric, find:
a) D and E as functions of p: Use

B P  (2/p)x107%, = 1449
B= e - Bsx100050) ~ , /™

Then
3.23ap

nC/m?

2 x 10~%a, [ 1 1} _ 3.28x10%, C/m? =
1

D=E+P=
p .06

b) Find Vg and y.: Use
0.8
144.9
Vap = [ dpzl%—'!.ﬂln( 3 ) =192V
3 n (.8

Xe = € — 1 = 1.56, as found in part a.

Bai 11:
6.5. The surface x = 0 separates two perfect dielectrics. For = > 0, let ¢, = €,1 = 3, while €2 =5

where = < 0. If E; = 80a, — 60a, — 30a. V/m, find:
a) Epp: This will be E; -a, = 80V /m.

= —60a, — 30a. V/m.

b) Egj;. This has components of E; not normal to the surface, or Epy

¢) Er; = /(60)2 + (30)2 = 67.1 V/m.
d) E; = /(80)% + (60)2 + (30)% = 104.4V/m.

e) The angle #; between E; and a normal to the surface: Use

El A Y il a
cosfl, = .~ 1044 = f; = 40.0

f) Dyo = Dy = €m16gENn1 = 3(8.85 x 10 12)(80) = 2.12nC/m?.

g) Dry = €969 Er; = 5(8.85 x 10712)(67.1) = 2.97 nC/m?.

h) Dy = e169En1a; + €060Ery = 2.12a, — 2.66a, — 1.33a, nC/m?.

i) P,=Dy — E; =Dy [l - (1/.2)] = (4/5)D; = 1.70a, — 2.13a, — 1.06a, nC/m?.

j) the angle #; between E; and a normal to the surface: Use

cosfly; = E; a, — D:-a; — 2.12
Ea Dy Vv (2.12)2 = (2.66)% 4 (1.33)2

= .n&l

Thus 6, = cos™ ' (.581) = 54.5°.



Bai 12:

6.7. Two perfect dielectrics have relative permittivities €,; = 2 and €, = 8 The planar interface
between them is the surface r —y+2z = 5. The origin lies in region 1. If E; = 100a, +200a, —
H0a. Vf m, find Ez: We need to find the components of E; that are normal and tangent to
the boundary, and then apply the appropriate boundary conditions. The normal component
will be E'y; = E; - n. Taking f = = — y + 2z, the unit vector that is normal to the surface is

n—ﬂ—i[ax—ﬂy—i—?az]

IVl Ve
This normal will point in the direction of increasing f, which will be away from the origin, or
into region 2 (you can visualize a portion of the surface as a triangle whose vertices are on the
three coordinate axes at z =5, y = —5, and z = 2.5). So Ey; = (lj‘-/ﬁ}[ll:lﬂ — 200 — 100] =
—81.7V/m. Since the magnitude is negative, the normal component points into region 1 from
the surface. Then

1
Ey, = —81.65 (ﬁ) la, —a, + 2a.] = —33.33a, + 33.33a, — 66.67a. V/m

Now, the tangential component will be Er; = E; — Exy = 133.3a, 4+ 166.7a, + 16.67a.. Our
boundary conditions state that E7o = E71 and En2 = (€,1/62)En1 = (1/4)En1. Thus

1
Es =Eprs +Exns =Epr + EENI = 133.3a, + lﬁﬁ.7ay + 16.67a, — 8.3a, + Sgﬂy — 16.67a.

= 125a, + 175a, V/m
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6.8. Region 1 (z > 0) is a dielectric with €. = 2, while region 2 (z < 0) has €2 = 5. Let
a) Find Da: One approach is to first find Ea. This will have the same y and z (tangential)
components as E;, but the normal component, E., will differ by the ratio €1 f €r2; this
arises from D,1 = D,2 (normal component of D is continuous across a non-charged

interface). Therefore E; = 20(€,1/€,2) a, —10a, +50a, = 8a, —10a, + 50 a.. The flux
density is then

D2 = €,260E2 = 40€p a, — 5060 a, + 250ep a. = 0.35a, — 0.44a, + 2.21a, nC/m*

b) Find the energy density in both regions: These will be

1 1
We) = zfrlCOEl B = 2{2}{(] [(ng I (10)2 | (513]2} = 3000cy = 26.6 nJ/m?

1 1 . . . .
wez = Ser2e0By - By = S(5)e0 [(8)% + (10)* 4 (50)%] = 6660ey = 59.0 nJ/m®
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6.10.
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Let the cylindrical surfaces p = 4 cm and p = 9 cm enclose two wedges of perfect dielectrics,
er1 =2for 0 < ¢ <m/2, and e,0 =5 for /2 < ¢ < 2r. If E; = (2000/p)a, V/m, find:
a) Ey: The interfaces between the two media will lie on planes of constant ¢, to which E;
is parallel. Thus the field is the same on either side of the boundaries, and so E; = E;.

b) the total electrostatic energy stored in a 1m length of each region: In general we have
wg = (1/2)e.60B%. So in region 1:

L opm/2 09 200012 .
Wer :f f f —(2}5_{}{ 000) pdpdpdz = EEQ(EGDD}Q In (g) =45.1 pu)
o Jo 1 2 p2 2 4

In region 2, we have

91 (2 157 .
Wee = f f f (5)eo Tm dpdpdz = i’reﬂ(zﬂﬂu)lln(g)zsgsm
m/ 2 -

Let S = 100mm?, d = 3 mm, and ¢, = 12 for a parallel-plate capacitor.
a) Calculate the capacitance:

eregA  12¢0(100 x 1076)

=== "3x10—>

= 0.4e5 = 3.54 pt

b) After connecting a 6 V battery across the capacitor, caleulate £, D. (), and the total
stored electrostatic energy: First,

E=Vy/d=6/(3x107%) =2000 V/m, then D =e.epF =24 x 10%*; = 0.21 uC/m?
The charge in this case is
Q=D -n|l.=DA=0.21 x (100 x 107%) = 0.21 x 107* pC = 21 pC

Finally, W, = (1/2)QV, = 0.5(21)(6) = 63 pJ.



Let €, =25 for 0 <y <1 mm, €0 =4 for 1l < y < 3 mm, and €,53 for 3 < y < 5 mm.
Conducting surfaces are present at y = 0 and y = 5 mm. Calculate the capacitance per square
meter of surface area if: a) €,3 is that of air; b) €,.3 = €,1; ¢) €3 = €,.0: d) region 3 is silver:
The combination will be three capacitors in series, for which

1 1 1 1 dy do ds 071 2 2
= — 4 — 4+ —= + + = 24 =
C Ci Cy C3  é€aeg(l)  e260(l)  €360(l) €0 |25 4 €as

So that
{E'.l * ].U_H }EQE,-;;

10 + 4.5¢,5

Evaluating this for the four cases, we find a) C = 3.05nF for ¢,3 = 1, b) C = 5.21 nF for
€3 = 2.5, ¢) C = 6.320F for €,3 = 4, and d) C = 9.83nF if silver (taken as a perfect
conductor) forms region 3; this has the effect of removing the term involving €,.3 from the
original formula (first equation line), or equivalently, allowing e,5 to approach infinity.
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6.17. Two coaxial conducting cylinders of radius 2 cm and 4 em have a length of 1m. The region
between the cylinders contains a layer of dielectric from p = ¢ to p = d with €, = 4. Find the
capacitance if

a) ¢ =2 cm, d =3 cm: This is two capacitors in series, and so

1 1 1 1 1 3 4
= = — |Z1 — 1 — = 143 pF
CT OO e [4 “(2)+ “(3)1 = O=148pF

b) d = 4 cm, and the volume of the dielectric is the same as in part a: Having equal volumes
requires that 32 - 922 =42 _ ¢? from which ¢ = 3.32 em. Now

1 1 1 1 3.32 1 4
C TG T 7 [‘“(T)*E‘“(ﬁ)] = C=101pF

6.19. Two conducting spherical shells have radii @ = 3 cm and b = 6 cm. The interior is a perfect
dielectric for which €, = &.
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a) Find C: For a spherical capacitor, we know that:

_ Amereg 47(8)ep

C = —
-1 (3—¢)(100)

= 1.92mey = 53.3pF

b) A portion of the dielectric is now removed so that ¢, = 1.0, 0 < ¢ < ?rr/lﬂ, and g, = &,
m/2 < ¢ < 2m. Again, find C: We recognize here that removing that portion leaves
us with two capacitors in parallel (whose C’s will add). We use the fact that with the
dielectric completely removed, the capacitance would be C'(e, = 1) = 53.3/8 = 6.67 pF.
With one-fourth the dielectric removed, the total capacitance will be

3
C = —(6.67) + 1{5:3.4} =41.7pF
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